A GENERAL THEORY OF CONJUGATE NETS IN PROJECTIVE HYPERSPACE

BY CHUAN-CHIH HSIUNG

Introduction. In a previous paper(1), the author has established a theory of the projective differential geometry of conjugate nets in a linear space S_4 of four dimensions. The purpose of the present paper is to extend the theory to a general linear space S_n $(n \ge 4)$.

In §1 a completely integrable system of linear homogeneous partial differential equations, together with its integrability conditions, is introduced by a purely geometric method defining a conjugate net N_x in the space S_n except for a projective transformation. A canonical form of the system of differential equations is obtained in §2 by a geometric determination.

In §3 we deduce the conditions of immovability for a point and a hyperplane in the space S_n relative to an invariant local pyramid of reference associated with a point x of the conjugate net N_x .

§§4, 5, 6 are devoted to proving the following theorems respectively.

THEOREM 1. In a linear space S_n of $n (\geq 3)$ dimensions let N_x be a conjugate net and π be a fixed hyperplane; then the points M, \overline{M} of intersection of the fixed hyperplane π and the two tangents at a point x of the net N_x describe two conjugate nets N_M , $N_{\overline{M}}$ in the hyperplane π respectively, and one of the two nets N_M , $N_{\overline{M}}$ is a Laplace transformed net of the other.

THEOREM 2. In a linear space S_n of $n \geq 4$ dimensions let N_x be a conjugate net and S_{n-2} be a fixed linear subspace of n-2 dimensions; then the point T of intersection of the fixed subspace S_{n-2} and the tangent plane at a point x of the surface sustaining the net N_x describes a conjugate net N_T in the subspace S_{n-2} .

THEOREM 3. Conjugate nets with equal and nonzero Laplace-Darboux invariants in a linear space S_n of $n (\ge 4)$ dimensions are characterized by the property that at each point x of any one of them there exists a proper hyperquadric (and therefore $\infty^{n(n+3)/2-11}$ such hyperquadrics) having second order contact at the Laplace transformed points x_{-1} , x_1 of the point x with both Laplace transformed surfaces S_{-1} , S_1 of the net N_x , respectively.

Presented to the International Congress of Mathematicians, August 31, 1950; received by the editors July 14, 1950.

⁽¹⁾ C. C. Hsiung, Projective theory of surfaces and conjugate nets in four-dimensional space, Amer. J. Math. vol. 69 (1947) pp. 607-621. A projective theory of conjugate nets in ordinary three-dimensional space has been established in a similar way by E. P. Lane; see his book, A treatise on projective differential geometry, University of Chicago Press, 1942, Chap. VIII.

1. Differential equations and integrability conditions. Let us consider a conjugate net N_x with parameters u, v in a linear space S_n of n (≥ 4) dimensions so that the homogeneous projective coordinates

$$x^{(1)}$$
, \dots $x^{(n+1)}$

of a nonsingular point x on the surface S sustaining the net N_x are given as analytic functions of the two independent variables u, v by equations of the form

$$(1.1) x = x(u, v).$$

The osculating linear space $S_k^{(u)}$ of k $(=2, \cdots, n-1)$ dimensions of the parametric curve u and the osculating linear space $S_{n-k+1}^{(v)}$ of n-k+1 dimensions of the parametric curve v at the point x of the net N_x intersect in a line l_{k-1} . Let us select on the lines l_1, \cdots, l_{n-2} respectively n-2 points y_1, \cdots, y_{n-2} , distinct from the point x, and suppose that the coordinates y_i of the point y_i $(i=1, \cdots, n-2)$ are functions of u, v. Then it can be shown that the coordinates y_i of the corresponding points y_i $(i=1, \cdots, n-2)$ satisfy a system of linear homogeneous partial differential equations of the form

$$x_{uv} = cx + ax_u + bx_v,$$

$$\frac{\partial^i x}{\partial u^i} = \alpha_i x + \beta_i x_u + \sum_{j=n-i}^{n-2} p_j^i y_j,$$

$$\frac{\partial^i x}{\partial v^i} = \delta_i x + \gamma_i x_v + \sum_{k=1}^{i-1} q_k^i y_k \qquad (i = 2, \dots, n-1),$$

in which subscripts indicate partial differentiation and the coefficients are scalar functions of u, v. The first of these equations is merely the Laplace equation for the parametric conjugate net N_z .

By using equations (1.2) it is easily seen that the derivatives y_{iu} can be written in the form

In particular, by actual calculation one obtains

$$q_1^2 A_1 = c_v + ac + b\delta_2 - c\gamma_2 - \delta_{2u}, \quad p_{n-2}^2 A_{n-2} = \alpha_3 - \alpha_2 \beta_2 - \alpha_{2u},$$

$$q_1^2 B_1 = a_v + a^2 - a\gamma_2 - \delta_2, \qquad p_{n-2}^2 B_{n-2} = \beta_3 - \alpha_2 - \beta_{2u} - \beta_2^2,$$

$$q_1^2 E_1 = b_v + ab + c - \gamma_{2u}, \qquad p_{n-2}^2 L_{n-3}^{n-2} = p_{n-3}^3,$$

$$L_1^1 = b - (\log q_1^2)_u; \qquad p_{n-2}^2 L_{n-2}^{n-2} = p_{n-2}^3 - p_{n-2}^2 \beta_2 - p_{n-2}^2, u.$$

Analogous expressions for y_{iv} can be written by making the substitution

$$(1.5) \begin{pmatrix} u \ \alpha_{i} \ \beta_{i} \ y_{i} & p_{i}^{k} & A_{i} & B_{i} & E_{1} \ L_{j}^{i} & H \ \xi_{1} \ \xi_{2} \ \xi_{i+3} \\ v \ \delta_{i} \ \gamma_{i} \ y_{n-(i+1)} \ q_{n-(i+1)} \ D_{n-(i+1)} \ C_{n-(i+1)} \ F_{n-2} \ M_{n-(j+1)}^{n-(i+1)} \ K \ \xi_{1} \ \xi_{3} \ \xi_{n+2-i} \end{pmatrix},$$

where H, K are the Laplace-Darboux invariants defined by the respective formulas

(1.6)
$$H = c + ab - a_u, K = c + ab - b_u.$$

and the E's will be defined in §3.

The integrability conditions of equations (1.2) are found by the usual method from the equations

$$\frac{\partial}{\partial u} \left(\frac{\partial^{n-i} x}{\partial u^{n-i}} \right) = \frac{\partial^{n-i+1} x}{\partial u^{n-i+1}}, \quad \frac{\partial}{\partial v} \left(\frac{\partial^{i} x}{\partial v^{i}} \right) = \frac{\partial^{i+1} x}{\partial v^{i+1}} \qquad (i = 2, \dots, n-2);$$

$$\frac{\partial}{\partial u} \left(\frac{\partial^{i+1} x}{\partial v^{i+1}} \right) = \frac{\partial^{i} x_{uv}}{\partial v^{i}}, \quad \frac{\partial}{\partial v} \left(\frac{\partial^{n-i} x}{\partial u^{n-i}} \right) = \frac{\partial^{n-(i+1)} x_{uv}}{\partial u^{n-(i+1)}} \qquad (i = 1, \dots, n-2);$$

$$(v_{iv})_{v} = (v_{iv})_{u} \qquad (i = 1, \dots, n-2);$$

and the fact that the points x, x_u , x_v , y_1 , \cdots , y_{n-2} are linearly independent. The result is given by the following equations and the analogous ones obtainable therefrom by the substitution (1.5):

$$A_{i} = \frac{1}{p_{i}^{n-i}} \left(\alpha_{n-i+1} - \alpha_{n-i,u} - \alpha_{2}\beta_{n-i} - \sum_{j=i+1}^{n-2} p_{j}^{n-i} A_{j} \right)$$

$$= \frac{1}{q_{i}^{i+1}} \left\{ \frac{\partial^{i}c}{\partial v^{i}} + ic \frac{\partial^{i-1}a}{\partial v^{i-1}} - \delta_{i+1,u} - c\gamma_{i+1} - \sum_{j=1}^{i-1} q_{i}^{i+1} A_{j} + \sum_{j=2}^{i} C_{i,j} \left[\frac{\partial^{i-j}c}{\partial v^{i-j}} \delta_{j} + \frac{\partial^{i-j}a}{\partial v^{i-j}} \left(\delta_{ju} + c\gamma_{j} + \sum_{k=1}^{j-1} q_{k}^{j} A_{k} \right) \right] \right\},$$

$$(1.7) \quad B_{i} = \frac{1}{p_{i}^{n-i}} \left(\beta_{n-i+1} - \alpha_{n-i} - \beta_{n-i,u} - \beta_{2}\beta_{n-i} - \sum_{j=i+1}^{n-2} p_{j}^{n-i} B_{j} \right)$$

$$= \frac{1}{q_{i}^{i+1}} \left[\frac{\partial^{i}a}{\partial v^{i}} + ia \frac{\partial^{i-1}a}{\partial v^{i-1}} - a\gamma_{i+1} - \delta_{i+1} - \sum_{j=1}^{i-1} q_{j}^{i+1} B_{j} + \sum_{j=2}^{i} C_{i,j} \frac{\partial^{i-j}a}{\partial v^{i-j}} \left(\delta_{j} + a\gamma_{j} + \sum_{k=1}^{j-1} q_{k}^{j} B_{k} \right) \right] \quad (i = 2, \dots, n-2),$$

$$L_{i-1}^{i} = p_{i-1}^{n-i+1} / p_{i}^{n-i}, \quad L_{i}^{i} = b - (\log q_{i}^{i+1})_{u} \quad (i = 2, \dots, n-2),$$

$$p_{j}^{n-i+1} = p_{ju}^{n-i} + p_{j}^{n-i} L_{j}^{j} + p_{j+1}^{n-i} L_{j}^{j+1} \quad (i = 2, \dots, n-3; i \leq j \leq n-3),$$

$$p_{n-2}^{n-i+1} = p_{n-j}^{n-i} \beta_{n-i} + p_{n-j}^{n-i} \mu + p_{n-j}^{n-i} \mu + p_{n-j}^{n-i} \mu^{n-j} \mu$$

$$\gamma_{i+1,u} + b\gamma_{i+1} + q_1^{i+1}E_1 = \frac{\partial^{i}b}{\partial v^{i}} + ib\frac{\partial^{i-1}a}{\partial v^{i-1}} + i\frac{\partial^{i-1}c}{\partial v^{i-1}} \\
+ \sum_{j=1}^{i} C_{i,j} \frac{\partial^{i-j}b}{\partial v^{i-j}} \gamma_{j+1} \\
+ \sum_{j=2}^{i} C_{i,j} \left[\frac{\partial^{i-j}c}{\partial v^{i-j}} \gamma_{i} + \frac{\partial^{i-j}a}{\partial v^{i-j}} (\gamma_{iu} + b\gamma_{i} + q_1^{i}E_1) \right] \\
(i = 2, \dots, n-2), \\
(1.7) q_{ku}^{i+1} + q_{k}^{i+1}L_{k}^{k} + q_{k+1}^{i+1}L_{k}^{k+1} = \sum_{j=k}^{i} C_{i,j} \frac{\partial^{i-j}b}{\partial v^{i-j}} q_{k}^{j+1} \\
+ \sum_{j=k+1}^{i} C_{i,j} \frac{\partial^{i-j}c}{\partial v^{i-j}} q_{k}^{j} + C_{i,k+2} \frac{\partial^{i-k+1}a}{\partial v^{i-k+1}} (q_{ku}^{k+1} + q_{k}^{k+1}L_{k}^{k}) \\
+ \sum_{j=k+2}^{i} C_{i,j} \frac{\partial^{i-j}a}{\partial v^{i-j}} (q_{ku}^{j} + q_{k}^{j}L_{k}^{k} + q_{k+1}^{j}L_{k}^{k+1}) \\
(i = 3, \dots, n-2; k = 1, \dots, i-2),$$

where $C_{i,j}$ denotes the number of combinations of i different things taken j at a time:

$$A_{1v} + cB_{1} + \delta_{2}E_{1} + D_{1}L_{1}^{1} = D_{1u} + cC_{1} + A_{1}M_{1}^{1} + A_{2}M_{2}^{1},$$

$$A_{iv} + cB_{i} + D_{i-1}L_{i-1}^{i} + D_{i}L_{i}^{i} = D_{iu} + cC_{i} + A_{i}M_{i}^{i} + A_{i+1}M_{i+1}^{i}$$

$$(i = 2, \cdots, n - 3),$$

$$A_{n-2,v} + cB_{n-2} + D_{n-3}L_{n-3}^{n-2} + D_{n-2}L_{n-2}^{n-2} = D_{n-2,u} + \alpha_{2}F_{n-2}$$

$$+ cC_{n-2} + A_{n-2}M_{n-2}^{n-2},$$

$$B_{iv} + aB_{i} = D_{i} + aC_{i} + B_{i}M_{i}^{i} + B_{i+1}M_{i+1}^{i} \qquad (i = 1, \cdots, n - 3),$$

$$B_{n-2,v} + aB_{n-2} + F_{n-2}L_{n-2}^{n-2} = D_{n-2} + F_{n-2,u} + \beta_{2}F_{n-2}$$

$$+ aC_{n-2} + B_{n-2}M_{n-2}^{n-2},$$

$$(1.8) \quad A_{1} + bB_{1} + E_{1v} + \gamma_{2}E_{1} + C_{1}L_{1}^{1} = C_{1u} + bC_{1} + E_{1}M_{1}^{1},$$

$$A_{i} + bB_{i} + C_{i-1}L_{i-1}^{i} + C_{i}L_{i}^{i} = C_{iu} + bC_{i} \qquad (i = 2, \cdots, n - 2),$$

$$L_{i-1,v}^{i} + L_{i-1}^{i}M_{i-1}^{i-1} = L_{i-1}^{i}M_{i}^{i} \qquad (i = 2, \cdots, n - 2),$$

$$L_{1v}^{1} + q_{1}^{2}E_{1} = M_{1u}^{1} + L_{1}^{2}M_{2}^{1},$$

$$L_{iv}^{i} + L_{i-1}^{i}M_{i}^{i-1} = M_{iu}^{i} + L_{i}^{i+1}M_{i+1}^{i} \qquad (i = 2, \cdots, n - 3),$$

$$L_{n-3,v}^{n-2} + L_{n-3}^{n-3}M_{n-3}^{n-3} = L_{n-3}^{n-2}M_{n-2}^{n-2},$$

$$L_{i}^{i}M_{i+1}^{i} = M_{i+1,u}^{i} + L_{i+1}^{i+1}M_{i+1}^{i} \qquad (i = 1, \cdots, n - 3),$$

$$L_{n-2,v}^{n-2} + L_{n-3}^{n-3}M_{n-2}^{n-3} = M_{n-2,u}^{n-2} + p_{n-2}^{2}F_{n-2}.$$

Making use of the third of equations (1.4), the ninth, the tenth, and the thirteenth of equations (1.8), and the substitution (1.5) we obtain

(1.9)
$$\left(a + \gamma_2 + \sum_{i=1}^{n-2} M_i^i\right)_{i} = \left(b + \beta_2 + \sum_{i=1}^{n-2} L_i^i\right)_{i}.$$

It follows that there exists a function θ of u, v which is defined, except for an arbitrary additive constant, as a solution of the differential equations

(1.10)
$$\theta_u = b + \beta_2 + \sum_{i=1}^{n-2} L_i^i, \qquad \theta_v = a + \gamma_2 + \sum_{i=1}^{n-2} M_i^i.$$

Accordingly, the following formula is valid:

$$(1.11) (x, x_u, x_v, y_1, \dots, y_{n-2}) = e^{\theta},$$

where a determinant is indicated by writing only a typical row within parentheses.

2. Canonical form of the differential equations. We now proceed to choose for the points y_1, \dots, y_{n-2} n-2 particular covariant points on the lines l_1, \dots, l_{n-2} respectively. To this end, at first we observe that the point X_1 defined by $X_1 = y_1 + kx$, where k is a scalar function of u, v, is on the line l_1 . When the point x varies along a curve C_{λ} of the family represented by the differential equation

$$(2.1) dv - \lambda du = 0,$$

 λ being a function of u, v, on the surface S, the point X_1 generates a curve C_{X_1} whose tangent at X_1 is determined by X_1 and the point X_1' given by

$$X'_1 = y_{1u} + y_{1v}\lambda + k(x_u + x_v\lambda) + k'x$$
 $(X'_1 = dX_1/du, \cdots).$

Expressing X_1' as a linear combination of x, x_u , x_v , y_1 , y_2 by means of the first of equations (1.3) and the substitution (1.5), and equating to zero the coefficients of x_u , x_v therein, we obtain two conditions on the functions k and λ which are necessary and sufficient that the tangent to the curve C_{X_1} at the point X_1 lies in the plane l_1l_2 , namely,

$$k + B_1 = 0,$$
 $E_1 + (C_1 + k)\lambda = 0.$

Similarly, we can also determine a unique point X_{n-2} on the line l_{n-2} and a unique curve of the family (2.1) such that as the point x varies along the curve the tangent to the locus of the point X_{n-2} at the point lies in the plane $l_{n-3}l_{n-2}$. If we choose these two points respectively for the points y_1 and y_{n-2} ,

$$(2.2) B_1 = 0, C_{n-2} = 0,$$

and the differential equations of the two curves become

$$(2.3) E_1 du + C_1 dv = 0, B_{n-2} du + F_{n-2} dv = 0.$$

Finally, we can determine a unique point X_h on the line l_h $(h=2, \cdots, n-3)$ such that as the point x varies along any curve, except the v-curve, on the surface S the tangent to the locus of the point X_h at the point is in the four-dimensional space determined by the lines l_{h-1} , l_h , l_{h+1} and the v-tangent. If we choose this point to be the point y_h , then

$$(2.4) B_h = 0 (h = 2, \dots, n-3).$$

Hereafter it will be supposed that the differential equations (1.2) are in the canonical form for which the conditions (2.2), (2.4) are satisfied.

It should be noted that the above choice of the points y_2, \dots, y_{n-3} is not symmetric with respect to the parameters u, v. However if the dimension of the space S_n is even and equal to n = 2m, we may determine the points y_2, \dots, y_{2m-3} by the conditions

$$(2.5) B_h = 0 (h = 2, \dots, m-1),$$

and the analogous ones

$$(2.6) C_i = 0 (i = m, \dots, 2m - 3).$$

3. Conditions of immovability. If the points x, y_1 , \cdots , y_{n-2} and the Laplace transformed points x_{-1} , x_1 at the point x of the net N_x , given by equations

$$(3.1) x_{-1} = x_u - bx, x_1 = x_v - ax,$$

are used as the vertices of the pyramid of reference with unit point suitably chosen, then any point P in the space given by an expression of the form

(3.2)
$$P = \xi_1 x + \xi_2 x_{-1} + \xi_3 x_1 + \sum_{i=1}^{n-2} \xi_{i+3} y_i$$

has local coordinates proportional to ξ_1, \dots, ξ_{n+1} . Differentiating the expression (3.2) and making use of the relations $P_u = 0$, $P_v = 0$, we can easily obtain the following conditions of immovability and the analogous ones obtainable therefrom by the substitution (1.5):

$$\xi_{1u} = -b\xi_{1} - H\xi_{3} - (A_{1} + aE_{1})\xi_{4} - \sum_{i=5}^{n+1} (A_{i-3} + bB_{i-3})\xi_{i},$$

$$\xi_{2u} = -\xi_{1} + (b - \beta_{2})\xi_{2} - \sum_{i=5}^{n+1} B_{i-3}\xi_{i},$$

$$\xi_{3u} = -b\xi_{3} - E_{1}\xi_{4},$$

$$\xi_{iu} = -L_{i-3}^{i-3}\xi_{i} - L_{i-3}^{i-2}\xi_{i+1} \qquad (i = 4, \dots, n),$$

$$\xi_{n+1,u} = -p_{n-2}^{2}\xi_{2} - L_{n-2}^{n-2}\xi_{n+1}.$$

Let π be a fixed hyperplane in the space S_n , which does not pass through the point x and has the equation

(3.4)
$$\pi \equiv \xi_1 + \sum_{i=0}^{n+1} \lambda_i \xi_i = 0,$$

where $\lambda_2, \dots, \lambda_{n+1}$ are functions of u, v. In order that the hyperplane π be fixed in the space S_n , it is necessary and sufficient that there be two functions k_1, k_2 of u, v such that

$$\pi_u = k_1 \pi, \qquad \pi_v = k_2 \pi,$$

provided that the derivatives of ξ_1, \dots, ξ_{n+1} in equations (3.5) be substituted from equations (3.3) and the analogous ones. Comparison of the coefficients of the corresponding terms in the first of equations (3.5) thus derived and elimination of k_1 , k_2 yield

$$\lambda_{2u} = (\beta_2 - 2b)\lambda_2 - \lambda_2^2 + p_{n-2}^2 \lambda_{n+1},$$

$$\lambda_{3u} = H - \lambda_2 \lambda_3,$$

$$(3.6) \quad \lambda_{4u} = A_1 + aE_1 + E_1 \lambda_3 + (L_1^1 - b)\lambda_4 - \lambda_2 \lambda_4,$$

$$\lambda_{iu} = A_{i-3} + bB_{i-3} + B_{i-3}\lambda_2 + L_{i-4}^{i-3} \lambda_{i-1} + (L_{i-3}^{i-3} - b)\lambda_i - \lambda_2 \lambda_i$$

$$(i = 5, \dots, n+1).$$

An analogous set of equations can be obtained from the second of equations (3.5) or by the substitution (1.5).

4. Laplace transformed nets in a fixed hyperplane derived from the net N_x . Now we consider the points M, \overline{M} where the fixed hyperplane π cuts the u-, v-tangents of the net N_x at the point x respectively. By means of equations (1.2), (1.3), (3.1), (3.4), (3.6), and the substitution (1.5), a simple calculation gives the following equations

$$M_{u} = \left[\alpha_{2} - b_{u} + (2b - \beta_{2})\lambda_{2} + \lambda_{2}^{2} - p_{n-2}^{2}\lambda_{n+1}\right]x$$

$$- (b - \beta_{2} + \lambda_{2})x_{u} + p_{n-2}^{2}y_{n-2},$$

$$(4.1) \quad M_{v} = (-ab + \lambda_{2}\lambda_{3})x + ax_{u} - \lambda_{2}x_{v},$$

$$M_{uv} = \left[a\alpha_{2} - a_{u}b - ab_{u} + (ab - a_{u})\lambda_{2} + (\beta_{2} - 2b)\lambda_{2}\lambda_{3} + p_{n-2}^{2}\lambda_{3}\lambda_{n+1} - 2\lambda_{2}^{2}\lambda_{3}\right]x + (a\beta_{2} - ab + a_{u} - a\lambda_{2} + \lambda_{2}\lambda_{3})x_{u}$$

$$+ \left[(b - \beta_{2})\lambda_{2} + \lambda_{2}^{2} - p_{n-2}^{2}\lambda_{n+1}\right]x_{v} + ap_{n-2}^{2}\gamma_{n-2},$$

from which it is easily seen that the coordinates of the point M satisfy the equation of Laplace

$$(4.2) M_{uv} = CM + M_u + BM_v,$$

 $M = -(b + \lambda_2)x + x_u,$

where

(4.3)
$$\mathcal{A} = a,$$

$$\mathcal{B} = \beta_2 - b - \lambda_2 + p_{n-2}^2 \lambda_{n+1} / \lambda_2,$$

$$\mathcal{C} = a(b - \beta_2) + a_u + a\lambda_2 + \lambda_2 \lambda_3 - ap_{n-2}^2 \lambda_{n+1} / \lambda_2.$$

Thus the point M describes a conjugate net N_M in the fixed hyperplane π . The Laplace transformed points M_1 , M_{-1} and the Laplace-Darboux invariants \mathcal{K} , K at the point M of this net N_M are given by the equations

$$M_{1} = -\lambda_{2}\overline{M},$$

$$M_{-1} = bp_{n-2}^{2} \frac{\lambda_{n+1}}{\lambda_{2}} x - p_{n-2}^{2} \frac{\lambda_{n+1}}{\lambda_{2}} x_{u} + p_{n-2}^{2} y_{n-2},$$

$$3C = \lambda_{2}\lambda_{3},$$

$$K = p_{n-2}^{2}K \frac{\lambda_{n+1}}{\lambda_{2}^{2}} - \frac{p_{n-2}^{2}}{\lambda_{2}} (D_{n-2} + bF_{n-2}).$$

By means of the substitution (1.5) we can write out immediately the similar equations for the point \overline{M} . Combining the above results and the similar one for a conjugate net in an ordinary space(2) we arrive at Theorem 1.

From equations (3.4), (4.4), it is easily seen that if every point x_{-1} lies in the fixed hyperplane π , then the net N_M coincides with the net N_{-1} , described by the point x_{-1} , which reduces to a u-curve. Similarly, if every point x_1 lies in the fixed hyperplane π , then H=0, $\mathfrak{R}=0$, and therefore the first Laplace transformed net of the net N_M coincides with the net N_1 , described by the point x_1 , which reduces to a v-curve. In each of these two special cases, the fixed hyperplane π is uniquely determined for the net N_x .

Finally, it should be noted that the net N_M has equal and nonzero Laplace-Darboux invariants \mathfrak{R} , K if and only if

$$(4.5) \lambda_{2}^{3} \lambda_{3} = \rho_{n-2}^{2} K \lambda_{n+1} - \rho_{n-2}^{2} (D_{n-2} + bF_{n-2}) \lambda_{2}.$$

5. A conjugate net associated with the net N_x in a fixed linear space S_{n-2} of n-2 dimensions. In this section we consider in the space S_n a fixed linear subspace S_{n-2} of n-2 dimensions determined by two fixed hyperplanes given respectively by equations (3.4) and

(5.1)
$$\xi_1 + \sum_{i=2}^{n+1} \mu_i \xi_i = 0,$$

where μ_2, \dots, μ_{n+1} are functions of u, v. In order that the second hyperplane (5.1) be fixed in the space S_n it is necessary and sufficient that μ_2, \dots, μ_{n+1}

⁽²⁾ C. C. Hsiung, Conjugate nets in three- and four-dimensional spaces, to appear in Duke Math. J.

satisfy a system of equations similar to (3.6) and the analogous ones obtainable by the substitution (1.5). From these two systems of equations it is easily seen that for a general net $N_x \lambda_2 \neq \mu_2$, as otherwise the two hyperplanes (3.4), (5.1) would be coincident. Similarly, $\lambda_3 \neq \mu_3$.

The tangent plane of the net N_x at the point x intersects the fixed subspace S_{n-2} in a point T whose coordinates are given by

(5.2)
$$T = \left[a(\lambda_2 - \mu_2) - b(\lambda_3 - \mu_3) + \lambda_2 \mu_3 - \lambda_3 \mu_2 \right] x + (\lambda_3 - \mu_3) x_u - (\lambda_2 - \mu_2) x_v.$$

Differentiating the expression (5.2) and making use of certain equations obtained in §3, we may show that the coordinates of the point T satisfy the equation of Laplace

$$(5.3) T_{uv} = {\mathcal{O}}^*T + {\mathcal{A}}^*T_u + {\mathcal{B}}^*T_v,$$

where we have placed

$$\mathcal{A}^* = \gamma_2 - a - (\lambda_3 + \mu_3) + \frac{q_1^2(\lambda_4 - \mu_4)}{\lambda_3 - \mu_3},$$

$$\mathcal{B}^* = \beta_2 - b - (\lambda_2 + \mu_2) + \frac{p_{n-2}^2(\lambda_{n+1} - \mu_{n+1})}{\lambda_2 - \mu_2},$$

$$\mathcal{C}^* = a_u + b_v - c - 2ab + a\beta_2 + b\gamma_2 - \beta_2\gamma_2 + (\gamma_2 - a)(\lambda_2 + \mu_2)$$

$$+ (\beta_2 - b)(\lambda_3 + \mu_3) - \lambda_2\mu_3 - \lambda_3\mu_2$$

$$+ \frac{q_1^2(\lambda_4 - \mu_4)}{\lambda_3 - \mu_3} (b - \beta_2 + \lambda_2 + \mu_2)$$

$$+ \frac{p_{n-2}^2(\lambda_{n+1} - \mu_{n+1})}{\lambda_2 - \mu_2} (a - \gamma_2 + \lambda_3 + \mu_3)$$

$$- p_{n-2}^2 \frac{(\lambda_4 - \mu_4)(\lambda_{n+1} - \mu_{n+1})}{(\lambda_2 - \mu_2)(\lambda_2 - \mu_2)}.$$

Thus we obtain Theorem 2.

The Laplace-Darboux invariants \mathcal{K}^* , K^* of the net N_T at the point T are given by the equations

(5.5)
$$K^* = \frac{q_1^2}{(\lambda_3 - \mu_3)^2} (\lambda_2 - \mu_2)(\lambda_3 \mu_4 - \lambda_4 \mu_3),$$

$$K^* = \frac{p_{n-2}^2}{(\lambda_2 - \mu_2)^2} (\lambda_3 - \mu_3)(\lambda_2 \mu_{n+1} - \lambda_{n+1} \mu_2).$$

It is obvious that $\Re^* = 0$ if, and only if, the line x_1y_1 corresponding to each

point x of the net N_x intersects the fixed subspace S_{n-2} . We can easily show that in this case the termination of the Laplace sequence determined by the net N_T in the fixed subspace S_{n-2} is that of Laplace, that is, its first Laplace transformed net reduces to a v-curve. Similarly, the minus-first Laplace transformed net of the net N_T reduces to a u-curve in case the line $x_{-1}y_{n-2}$ corresponding to each point x of the net N_x intersects the fixed subspace S_{n-2} . Moreover, the Laplace sequence determined by the net N_T in the fixed subspace S_{n-2} terminates in both directions after one transformation of Laplace according to the case of Laplace if, and only if, the lines x_1y_1 , $x_{-1}y_{n-2}$ corresponding to each point x of the net N_x both intersect the fixed subspace S_{n-2} .

Finally, from equations (5.5) it follows immediately that the net N_T has equal and nonzero Laplace-Darboux invariants \mathfrak{K}^* , K^* in case

$$(5.6) p_{n-2}^2(\lambda_3 - \mu_3)^3(\lambda_2\mu_{n+1} - \lambda_{n+1}\mu_2) = q_1^2(\lambda_2 - \mu_2)^3(\lambda_3\mu_4 - \lambda_4\mu_3).$$

6. Conjugate nets with equal and nonzero Laplace-Darboux invariants. It is known that as u, v vary the Laplace transformed points x_{-1} , X_1 given by equations (3.1) at the point x of the conjugate net N_x in the space S_n generate two surfaces S_{-1} , S_1 , on which the parametric curves also form two conjugate nets N_{-1} , N_1 . As usual, we call the surfaces S_{-1} , S_1 and the nets N_{-1} , N_1 respectively, the minus-first and first Laplace transformed surfaces and nets of N_{-x} . In this section we shall first find the power series expansions of the surfaces S_{-1} , S_1 at the points x_{-1} , x_1 .

From the system (1.2), equations (1.3), (1.4), (3.1), and the substitution (1.5) by differentiation and substitution, any derivative of x_{-1} can be expressed as a linear combination of x, x_u , x_v , y_1 , \cdots , y_{n-2} . In particular, one obtains

$$x_{-1u} = (\alpha_2 - b_u)x + (\beta_2 - b)x_u + p_{n-2}^2 y_{n-2},$$

$$x_{-1v} = (c - b_v)x + ax_u,$$

$$x_{-1uu} = (\alpha_3 - b_{uu} - b\alpha_2)x + (\beta_3 - 2b_u - b\beta_2)x_u$$

$$+ p_{n-3}^3 y_{n-3} + (p_{n-2}^3 - bp_{n-2}^2)y_{n-2},$$

$$x_{-1uv} = (c_u - b_{uv} + ac)x + (a_u - b_v + c + a\beta_2)x_u + ap_{n-2}^2 y_{n-2},$$

$$x_{-1vv} = (c_v - b_{vv} + ac)x + (a_v + a^2)x_u + Kx_v.$$

The coordinates X, where

$$X = x_{-1}(u + \Delta u, v + \Delta v),$$

of any point X near the point x_{-1} on the surface S_{-1} can be represented by the Taylor's expansion as power series in the increments Δu , Δv corresponding to displacement on the surface S_{-1} from the point x_{-1} to the point X:

(6.2)
$$X = x_{-1} + x_{-1u}\Delta u + x_{-1v}\Delta_v + \frac{1}{2}(x_{-1u}\Delta u^2 + 2x_{-1uv}\Delta u\Delta v + x_{-1vv}\Delta v^2) + \cdots$$

Substituting the expressions (6.1) in equation (6.2) we obtain the local coordinates ξ_1, \dots, ξ_{n+1} of the point X:

where the unwritten coordinates are of at least third degree in Δu , Δv . By means of (6.3) it follows that a hyperquadric with the general equation

(6.4)
$$\sum_{i,k=1}^{n+1} a_{ik} \xi_i \xi_k = 0 \qquad (a_{ik} = a_{ki})$$

has second order contact with the surface S_{-1} at the point x_{-1} in case

$$a_{12} = a_{1,n+1} = a_{22} = a_{2,n+1} = 0, a_{23} = -Ka_{11},$$

$$a_{n+1,n+1} = -\frac{p_{n-3}^3}{(p_{n-2}^2)^2} a_{2n}.$$

Similarly, the hyperquadric (6.4) has second order contact with the surface S_1 at the point x_1 if, and only if,

$$a_{13} = a_{14} = a_{33} = a_{34} = 0, a_{23} = -Ha_{11},$$

$$a_{44} = -\frac{q_2^3}{(g_1^2)^2} a_{35}.$$

Combining the conditions (6.5), (6.6) we thus reach Theorem 3(3).

THE UNIVERSITY OF WISCONSIN, MADISON, WIS.

⁽³⁾ This theorem was formerly obtained by the author for the case n=4, loc. cit. (see footnote 1). However, it is not true for a general conjugate net with equal and nonzero Laplace-Darboux invariants in ordinary space; see the author's paper, New geometrical characterizations of some special conjugate nets, Duke Math. J. vol. 12 (1945) p. 252.